Mass per unit volume (a measure of the 'compactness' of a substance)

$$
\text { density }\left(\mathrm{g} / \mathrm{cm}^{3}\right)=\frac{\text { mass }(\mathrm{g})}{\text { volume }\left(\mathrm{cm}^{3}\right)}
$$

Density depends on: material \& particle arrangement

3 states of matter:

Solids: particles vibrate, have strong intermolecular forces = rigid structure, highest density (particles are compressed)

Liquids: move randomly, weak intermolecular forces = irregular structure, less dense

Gases: random movement, no intermolecular forces = move rapidly in all directions, low density

Material is compressed = particles are close together $=$ high density

Internal energy:

The total energy of potential \& kinetic energy stores of particles

Heating a system = particles gain kinetic energy = particles have higher potential energy = change in temp or state

Changes of state:

Physical (so reversible) reactions = can revert to original properties Number of particles doesn't change = mass is conserved

When changes of state occur, energy isn't used to raise the temp anymore, but rather to break the bonds of the substance!

Changes of State

Specific latent heat:

The energy needed to change the state of 1 kg of substance WITHOUT changing its temperature

Cooling = energy released

Specific latent heat of fusion: melting \& freezing
Specific latent heat of vaporisation: evaporating, boing \& condensing

Energy = mass x specific latent heat
 $J \quad \mathrm{~kg} \quad \mathrm{~J} / \mathrm{kg}$
 $E=m L$

At melting/boiling point, internal energy is still increasing but energy is used to break the bonds instead of to raise the temperature

Condensing \& freezing: bonds are formed = energy is released (internal energy decreases but temp doesn't decrease until all the substance has turned into a liquid/solid)

Particle motion in gases:

Increasing thermal energy \& decreasing the volume of a sealed container = increases kinetic energy = faster particle collisions in random directions = higher pressure exerted on container's walls

Volume decreases $=$ Pressure increases (inversely proportional for a fixed mass of gas at a constant temp)

Changes in pressure can cause changes in volume:

The pressure of a gas causes a net outwards force at right angles to the surface of its container
An outside force is caused by gas around the object
A balloon can compress/expand due to the overall force
E.g. a ballon is released \rightarrow it rises \rightarrow outwards pressure decreases (with height) \rightarrow ballon expands till the inside pressure of the ballon $=$ the outside pressure

Transferring energy by applying a force = doing work
Causes an increase in internal energy \& temperature

Bike pump: gas puts pressure on the plunger $=a$ force is exerted mechanically (work is done against the force to push the plunger down)

Energy is transferred from the kinetic energy stores of the gas particles so temp increases

