## Nuclear radiation:

| Particle | Description                                                                                           | Charge | Penetration<br>& ionisation                        | Nuclear<br>equations                                                      |
|----------|-------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------|---------------------------------------------------------------------------|
| Alpha    | 2 protons<br>2 Neutrons<br>Same as<br>helium<br>nucleus                                               | +2     | Stopped<br>by<br>paper<br>Highly<br>ionising       | Mass number:<br>take away 4<br>Atomic<br>number: take<br>away 2           |
| Beta     | A neutron<br>turns into a<br>proton, a<br>high speed<br>electron is<br>ejected<br>from the<br>nucleus | -1     | Stopped<br>by<br>aluminium<br>Medium<br>ionisation | Mass number<br>stays the<br>same<br>Atomic<br>number<br>increases by<br>1 |
| Gamma    | EM wave                                                                                               | N/A    | Stopped<br>by lead<br>Low<br>ionisation            | N/A                                                                       |

# Nuclear equations:

Atom before decay -> Atom after decay + Radiation emitted

Total mass & atomic numbers are equal on both sides

# Alpha decay

 $\longrightarrow \frac{231}{90}$ Th +  $\frac{4}{2}$ He <sup>235</sup>92

Beta decay



## Gamma decay

 $^{235}_{92}$ U  $\longrightarrow ^{231}_{92}$ Th +  $^{0}_{0}$ Y

#### Half life:

Radioactive decay = RANDOM process which atoms use to become stable

Geiger-Müller counter: measures count rate (radiation/sec)

Activity = rate of decay in Becquerels, Bq (1Bq = 1 decay/sec) but never reaches 0

Half life = the time taken for the number of radioactive nuclei in an isotope to halve

Short half life: activity falls quickly = dangerous at the start (emit high amount of radiation) then become safe

Long half life: activity gradually drops = dangerous in the long run as emits radiation over decades



80 ÷ 2 = 40 So 2 half life = 2 days



Contamination:

Unwanted radioactive atoms get on a substance Object begins to emit radiation too Safety: wear gloves & protective suits, use tongs to handle materials

Irradiation:

Objects are exposed to radiation Object does not begin emitting radiation Safety: keep sources in lead lined boxes, stand behind barriers

Harm:

Outside the body: Gamma Gamma can penetrate through the skin to organs (but will come out eventually)

Inside the body: Alpha Cannot leave the body so will continue to ionise cells, causing mutations & cancer in a localised area